276 research outputs found

    Mechanical design of NASA Ames Research Center vertical motion simulator

    Get PDF
    NASA has designed and is constructing a new flight simulator with large vertical travel. Several aspects of the mechanical design of this Vertical Motion Simulator (VMS) are discussed, including the multiple rack and pinion vertical drive, a pneumatic equilibration system, and the friction-damped rigid link catenaries used as cable supports

    Predictive value of midsagittal tissue bridges on functional recovery after spinal cord injury

    Get PDF
    Background: The majority of patients with spinal cord injury (SCI) have anatomically incomplete lesions and present with preserved tissue bridges, yet their outcomes vary. Objective: To assess the predictive value of the anatomical location (ventral/dorsal) and width of preserved midsagittal tissue bridges for American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade conversion and SCI patient stratification into recovery-specific subgroups. Methods: This retrospective longitudinal study includes 70 patients (56 men, age: 52.36 ± 18.58 years) with subacute (ie, 1 month) SCI (45 tetraplegics, 25 paraplegics), 1-month neuroimaging data, and 1-month and 12-month clinical data. One-month midsagittal T2-weighted scans were used to determine the location and width of tissue bridges. Their associations with functional outcomes were assessed using partial correlation and unbiased recursive partitioning conditional inference tree (URP-CTREE). Results: Fifty-seven (81.4%) of 70 patients had tissue bridges (2.53 ± 2.04 mm) at 1-month post-SCI. Larger ventral (P = .001, r = 0.511) and dorsal (P < .001, r = 0.546) tissue bridges were associated with higher AIS conversion rates 12 months post-SCI (n = 39). URP-CTREE analysis identified 1-month ventral tissue bridges as predictors of 12-month total motor scores (0.4 mm cutoff, P = .008), recovery of upper extremity motor scores at 12 months (1.82 mm cutoff, P = .002), 12-month pin-prick scores (1.4 mm cutoff, P = .018), and dorsal tissue bridges at 1 month as predictors of 12-month Spinal Cord Independence Measure scores (0.5 mm cutoff, P = .003). Conclusions: Midsagittal tissue bridges add predictive value to baseline clinical measures for post-SCI recovery. Based on tissue bridges' width, patients can be classified into subgroups of clinical recovery profiles. Midsagittal tissue bridges provide means to optimize patient stratification in clinical trials

    Tissue bridges predict neuropathic pain emergence after spinal cord injury

    Get PDF
    Objective To assess associations between preserved spinal cord tissue quantified by the width of ventral and dorsal tissue bridges and neuropathic pain development after spinal cord injury. Methods This retrospective longitudinal study includes 44 patients (35 men; mean (SD) age, 50.05 (18.88) years) with subacute (ie, 1 month) spinal cord injury (25 patients with neuropathic pain, 19 pain-free patients) and neuroimaging data who had a follow-up clinical assessment at 12 months. Widths of tissue bridges were calculated from midsagittal T2-weighted images and compared across groups. Regression analyses were used to identify relationships between these neuroimaging measures and previously assessed pain intensity and pin-prick score. Results Pin-prick score of the 25 patients with neuropathic pain increased from 1 to 12 months (Δmean=10.08, 95% CI 2.66 to 17.50, p=0.010), while it stayed similar in pain-free patients (Δmean=2.74, 95% CI −7.36 to 12.84, p=0.576). They also had larger ventral tissue bridges (Δmedian=0.80, 95% CI 0.20 to 1.71, p=0.008) at 1 month when compared with pain-free patients. Conditional inference tree analysis revealed that ventral tissue bridges’ width (≤2.1 or >2.1 mm) at 1 month is the strongest predictor for 12 months neuropathic pain intensity (1.90±2.26 and 3.83±1.19, p=0.042) and 12 months pin-prick score (63.84±28.26 and 92.67±19.43, p=0.025). Interpretation Larger width of ventral tissue bridges—a proxy for spinothalamic tract function—at 1 month post-spinal cord injury is associated with the emergence and maintenance of neuropathic pain and increased pin-prick sensation. Spared ventral tissue bridges could serve as neuroimaging biomarkers of neuropathic pain and might be used for prediction and monitoring of pain outcomes and stratification of patients in interventional trials

    Surface characterization

    Get PDF
    The biocompatibility of commercially pure titanium and its alloys is closely related to their surface properties, with both the composition of the protecting oxide film and the surface topography playing an important role. Surfaces of commercially pure titanium and of the two alloys Ti-6Al-7Nb and Ti-6Al-4V (wt %) have been investigated following three different pretreatments: polishing, nitric acid passivation and pickling in nitric acid-hydrogen fluoride. Nitric acid treatment is found to substantially reduce the concentration of surface contaminants present after polishing. The natural 4-6 nm thick oxide layer on commercially pure titanium is composed of titanium oxide in different oxidation states (TiO2, Ti2O3 and TiO), while for the alloys, aluminium and niobium or vanadium are additionally present in oxidized form (Al2O3, Nb2O5 or V-oxides). The concentrations of the alloying elements at the surface are shown to be strongly dependent on the pretreatment process. While pickling increases the surface roughness of both commercially pure titanium and the alloys, different mechanisms appear to be involved. In the case of commercially pure titanium, the dissolution rate depends on grain orientation, whereas in the case of the two alloys, selective α-phase dissolution and enrichment of the β-phase appears to occur. © 1999 Kluwer Academic Publisher

    Segmentation and tracking individual pseudomonas aeruginosa bacteria in dense populations of motile cells

    Full text link
    The dynamics of individual bacteria underlies the manifestation of complex multicellular behaviours such as biofilm development and colony expansion. High resolution movies of expanding bacterial colonies reveal intriguing patterns of cell motions. A quantitative understanding of the observed behaviour in relation to the bacteria's own motile apparatus and to hydrodynamic forces requires that bacteria be identified and tracked over time. This represents a demanding undertaking as their size is close to the diffraction limit; they are very close to each other; and a typical image may contain over a thousand cells. Here, we describe the approach that we have developed to segment individual bacteria and track them in high resolution phase contrast microscopy movies. We report that over 99% of non-overlapping bacteria could be segmented correctly using mathematical morphology, and we present preliminary results that exploit this new capability. © 2009 IEEE

    Longitudinal changes of spinal cord grey and white matter following spinal cord injury

    Get PDF
    Objectives: Traumatic and non-traumatic spinal cord injury produce neurodegeneration across the entire neuraxis. However, the spatiotemporal dynamics of spinal cord grey and white matter neurodegeneration above and below the injury is understudied. // Methods: We acquired longitudinal data from 13 traumatic and 3 non-traumatic spinal cord injury patients (8–8 cervical and thoracic cord injuries) within 1.5 years after injury and 10 healthy controls over the same period. The protocol encompassed structural and diffusion-weighted MRI rostral (C2/C3) and caudal (lumbar enlargement) to the injury level to track tissue-specific neurodegeneration. Regression models assessed group differences in the temporal evolution of tissue-specific changes and associations with clinical outcomes. // Results: At 2 months post-injury, white matter area was decreased by 8.5% and grey matter by 15.9% in the lumbar enlargement, while at C2/C3 only white matter was decreased (−9.7%). Patients had decreased cervical fractional anisotropy (FA: −11.3%) and increased radial diffusivity (+20.5%) in the dorsal column, while FA was lower in the lateral (−10.3%) and ventral columns (−9.7%) of the lumbar enlargement. White matter decreased by 0.34% and 0.35% per month at C2/C3 and lumbar enlargement, respectively, and grey matter decreased at C2/C3 by 0.70% per month. // Conclusions: This study describes the spatiotemporal dynamics of tissue-specific spinal cord neurodegeneration above and below a spinal cord injury. While above the injury, grey matter atrophy lagged initially behind white matter neurodegeneration, in the lumbar enlargement these processes progressed in parallel. Tracking trajectories of tissue-specific neurodegeneration provides valuable assessment tools for monitoring recovery and treatment effects

    Longitudinal changes of spinal cord grey and white matter following spinal cord injury

    Get PDF
    Objectives: Traumatic and non-traumatic spinal cord injury produce neurodegeneration across the entire neuraxis. However, the spatiotemporal dynamics of spinal cord grey and white matter neurodegeneration above and below the injury is understudied. Methods: We acquired longitudinal data from 13 traumatic and 3 non-traumatic spinal cord injury patients (8-8 cervical and thoracic cord injuries) within 1.5 years after injury and 10 healthy controls over the same period. The protocol encompassed structural and diffusion-weighted MRI rostral (C2/C3) and caudal (lumbar enlargement) to the injury level to track tissue-specific neurodegeneration. Regression models assessed group differences in the temporal evolution of tissue-specific changes and associations with clinical outcomes. Results: At 2 months post-injury, white matter area was decreased by 8.5% and grey matter by 15.9% in the lumbar enlargement, while at C2/C3 only white matter was decreased (-9.7%). Patients had decreased cervical fractional anisotropy (FA: -11.3%) and increased radial diffusivity (+20.5%) in the dorsal column, while FA was lower in the lateral (-10.3%) and ventral columns (-9.7%) of the lumbar enlargement. White matter decreased by 0.34% and 0.35% per month at C2/C3 and lumbar enlargement, respectively, and grey matter decreased at C2/C3 by 0.70% per month. Conclusions: This study describes the spatiotemporal dynamics of tissue-specific spinal cord neurodegeneration above and below a spinal cord injury. While above the injury, grey matter atrophy lagged initially behind white matter neurodegeneration, in the lumbar enlargement these processes progressed in parallel. Tracking trajectories of tissue-specific neurodegeneration provides valuable assessment tools for monitoring recovery and treatment effects
    corecore